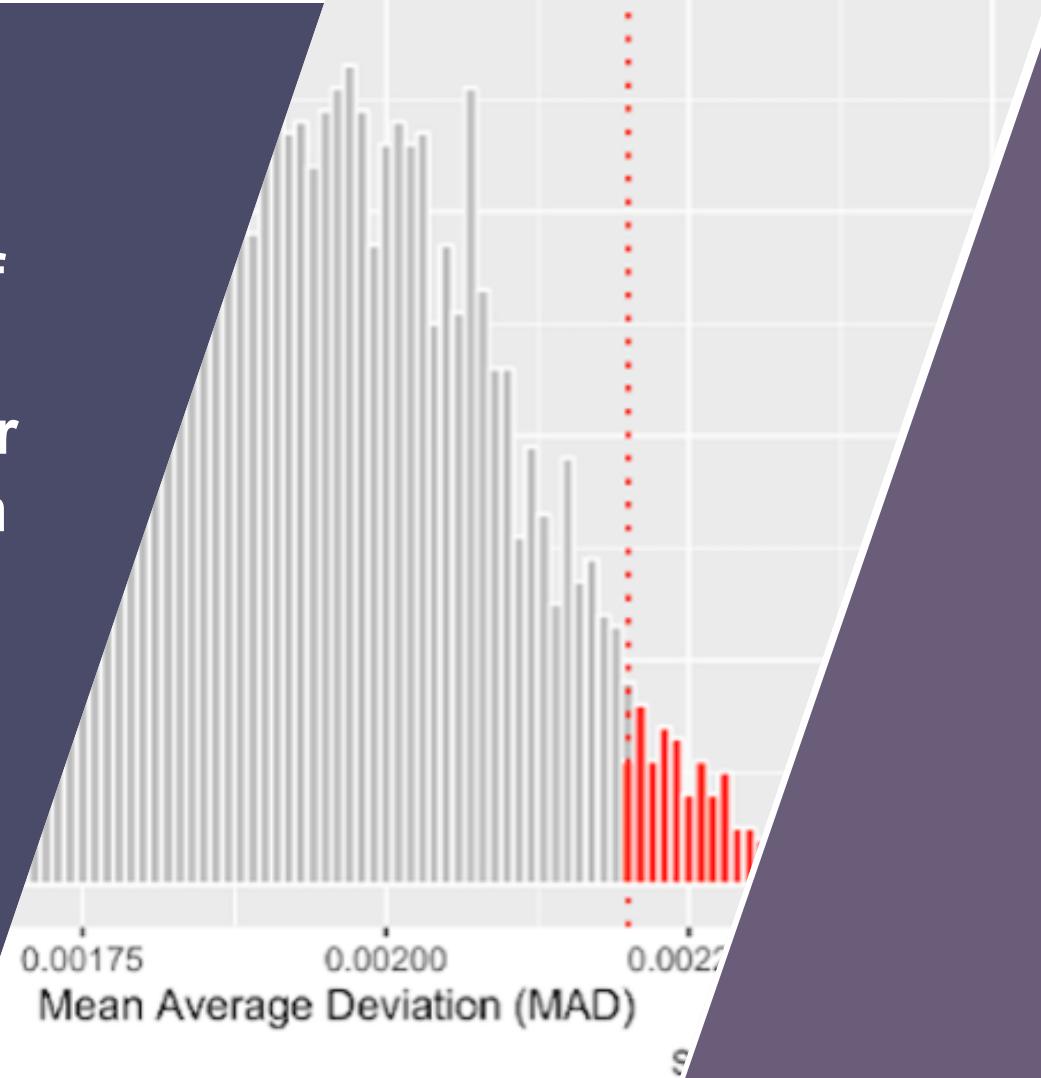




# Improving the accuracy of the Benford algorithm via Monte Carlo simulation for sample size determination


---

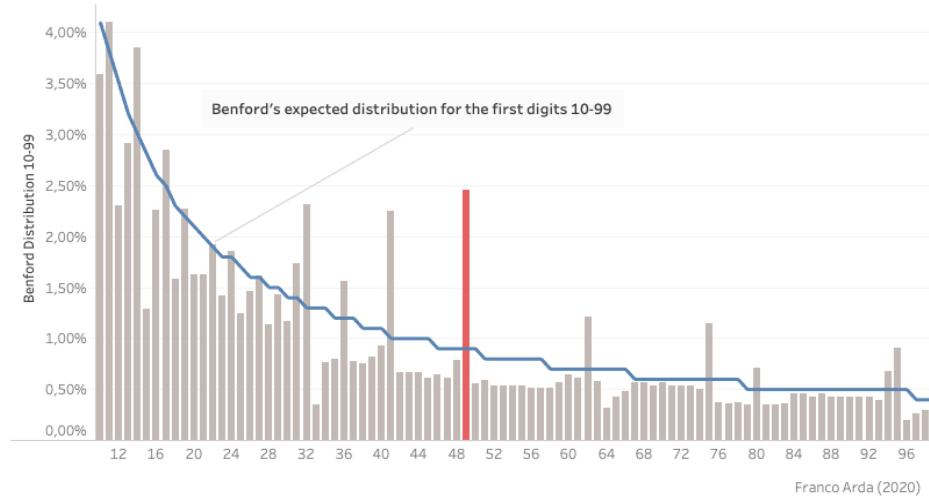
By Franco Arda

Doctoral (DBA) Thesis Defense

Supervisor: Prof. Dr. George Iatridis

Date: 25 February 2021






# Table of Content – Proposal Defense Outline

|    |                          |
|----|--------------------------|
| 01 | Overview of the Research |
| 02 | Research Questions       |
| 03 | Research Hypotheses      |
| 04 | Review of Literature     |
| 05 | Research Process         |
| 06 | Research Results         |
| 07 | Importance of the Study  |



# Benford's Law to detect fraud





*“... for auditors, the **false positives** have become a strong deterrent to the use of Benford’s Law ...”*

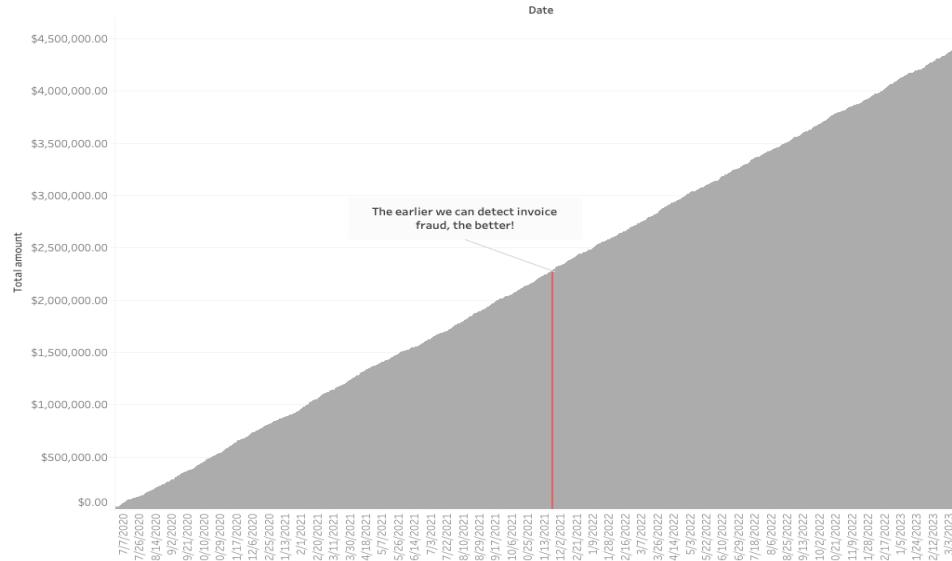
(Miller, 2015)



# Empirical false positive rate at 9%?

|              | Predicted |          |
|--------------|-----------|----------|
|              | Positive  | Negative |
| Actual True  | 1         | 0        |
| Actual False | 0.09      | 1        |




# Research Question

*“... it is not clear, how large our numbers (sample size) have to be...”*

(Nigirini, 2012 and 2020)



# With fraud detection, the false positives AND the sample size must be as *small* as possible.





# Research Hypotheses

01

## Research Hypothesis #1

For Benford's Law, can we determine the sample size required at a given confidence interval?

02

## Research Hypothesis #2

With the required sample size, can we improve the accuracy of the Benford algorithm at a statistically significant level with a p-value 0.05?





# Review of Literature

Research on Bedford's Law:

**1** **Forensic Analytics: Methods and Techniques for Forensic Accounting**, 2020

Prof. Nigrini is probably the world's foremost expert on Benford's Law.

**2** **An Introduction to Bedford's Law**, 2015

Highly mathematical, but includes problems with Bedford's Law in practice, in particular the high false positive rate.

**3** **The Use of Bedford's Law as a Tool for Detecting Fraud in Accounting Data**, 2016

Offers a deeper analysis of the first-two digit algorithm.

Research on computational statistics in R:

**4** **Mathematical Statistics with Resampling**, 2019

Advanced techniques with Monte Carlo simulations, bootstrap, and challenges with nonlinear distributions.

**5** **Data Science: Data Analysis and Prediction Algorithms with R**, 2019

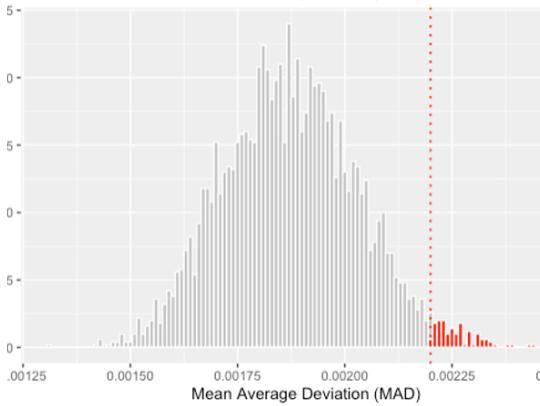
Probability and random variables for running plain-vanilla Monte Carlo simulations in R.

**6** **Statistical Inference via Data Science**, 2019

Offers a library in R to run permutation based hypothesis test with beautiful visualizations.



# Research Process


| Vendor_3 | Vendor_4 | Vendor_5 | Vendor_6 | Vendor_7 | Vendor_8 | Vendor_9 | Vendor_10 |
|----------|----------|----------|----------|----------|----------|----------|-----------|
| 7153.52  | 9418.90  | 463.45   | 385.83   | 20950.77 | 59.21    | 157.04   | 894.54    |
| 952.22   | 24.46    | 1793.08  | 61.72    | 17234.55 | 16248.00 | 5243.24  | 2068.2    |
| 18.20    | 35.38    | 1487.30  | 153.89   | 53.02    | 575.44   | 36.04    | 6474.4    |
| 16.35    | 28131.96 | 5105.05  | 32151.41 | 4830.59  | 11376.27 | 651.63   | 39120.1   |
| 9476.62  | 15.95    | 2307.81  | 26.79    | 9585.17  | 745.42   | 1301.37  | 172.82    |
| 0956.55  | 27874.05 | 94885.53 | 21897.78 | 281.06   | 1102.55  | 114.39   | 5385.1    |
| 238.23   | 78.78    | 1803.02  | 13.43    | 55.41    | 39336.89 | 35.03    | 105.25    |
| 30.42    | 18297.85 | 3218.10  | 3922.83  | 9061.50  | 554.12   | 34.67    | 6263.2    |
| 775.64   | 125.20   | 258.46   | 4317.18  | 19.41    | 36610.02 | 2639.98  | 88470.8   |
| 306.40   | 63620.93 | 124.62   | 27593.07 | 12.27    | 3735.94  | 54600.92 | 16323.0   |
| 24.52    | 98.36    | 3897.62  | 83.64    | 1332.91  | 681.08   | 35.78    | 20155.8   |
| 978.42   | 792.87   | 20.72    | 11.58    | 20.95    | 33.48    | 6492.32  | 21837.3   |
| 6377.37  | 4070.05  | 140.86   | 1440.12  | 49249.29 | 42.74    | 24.25    | 142.65    |
| 145.34   | 11.25    | 639.73   | 3760.11  | 137.66   | 7284.50  | 48.13    | 12.59     |
| 12.75    | 13.33    | 380.89   | 2255.28  | 129.30   | 15289.74 | 2000.78  | 9727.4    |
| 133.44   | 1964.26  | 833.30   | 21.14    | 2434.45  | 472.93   | 29.40    | 6338.7    |
| 19.02    | 46687.43 | 10.13    | 23615.66 | 13.89    | 98.08    | 12953.88 | 973.64    |
| 5318.32  | 81.36    | 6956.65  | 2823.58  | 114.92   | 333.27   | 1741.00  | 4458.6    |
| 414.95   | 83791.51 | 676.08   | 377.05   | 10.06    | 53161.84 | 401.05   | 43411.0   |
| 4859.36  | 2477.4   | 24479.36 | 190.90   | 19.23    | 7085.98  | 10.38    | 2284.5    |
| 9796.64  | 3535.09  | 36.81    | 84.26    | 169.04   | 74.27    | 207.40   | 31739.4   |
| 313.91   | 347.70   | 18382.31 | 14401.24 | 97.90    | 133.78   | 44.87    | 1875.8    |
| 1713.03  | 10.11    | 782.71   | 5425.00  | 19.73    | 63.15    | 35.97    | 17.52     |
| 813.00   | 26.55    | 2696.50  | 10.89    | 1561.71  | 62058.32 | 27.87    | 2525.8    |
| 7948.97  | 146.82   | 98.27    | 544.50   | 60701.58 | 14.60    | 19.23    | 10794.4   |
| 427.73   | 62.06    | 41304.75 | 29.32    | 24524.49 | 10.70    | 99815.96 | 5039.6    |

## Step 01

Create a dataset of 100 vendors with different invoice amounts.

## Monte Carlo Simulation for Sample Size Estimation

At a confidence interval at 95%, the required sample size is 1,532.



## Step 02

Simulate the required sample size based a confidence interval (e.g., 5%).

| Vendor:   | Benchmark II: | Ground truth: | Alternative: | Ground truth: |
|-----------|---------------|---------------|--------------|---------------|
| Vendor 14 | 0.000239      | ✓             | 0.000239     | ✓             |
| Vendor 15 | 0.000239      | ✓             | 0.000239     | ✓             |
| Vendor 16 | 0.000239      | ✓             | 0.000239     | ✓             |
| Vendor 17 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 18 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 19 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 20 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 21 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 22 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 23 | 0.000121      | ✓             | 0.000121     | ✓             |
| Vendor 24 | 0.000121      | ✓             | 0.000121     | ✓             |

## Step 03

Test the accuracy of the algorithm and run a hypothesis test at a p-value of 0.05.

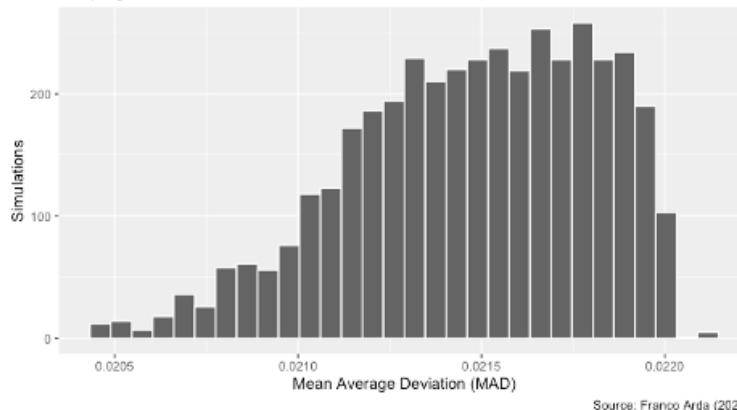


# The synthetic dataset of almost 1 million invoices.

In order to test our hypothesis, we created a synthetic dataset of 100 vendors with up to 10,000 invoices each.

- 85 vendors with Benford conform invoice amounts.
- 10 vendors with only a few invoices.
- 5 vendors with randomized invoices (i.e., fraudulent).

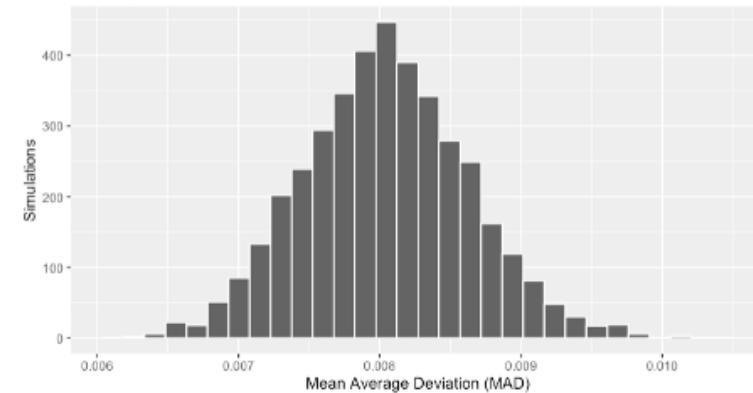
| Vendor_3 | Vendor_4 | Vendor_5 | Vendor_6 | Vendor_7 | Vendor_8 | Vendor_9 | Vendor_10 |
|----------|----------|----------|----------|----------|----------|----------|-----------|
| 153.52   | 9418.90  | 463.45   | 385.83   | 20950.77 | 59.21    | 157.04   | 894.5     |
| 952.22   | 24.46    | 1793.08  | 61.72    | 17234.55 | 16248.00 | 5243.24  | 2068.1    |
| 18.20    | 35.38    | 1487.30  | 153.89   | 53.02    | 575.44   | 36.04    | 6474.4    |
| 16.35    | 28131.96 | 5105.05  | 32151.41 | 4830.59  | 11376.27 | 651.63   | 39120.    |
| 476.62   | 15.95    | 2307.81  | 26.79    | 9585.17  | 745.42   | 1301.37  | 172.8     |
| 956.55   | 27874.05 | 94885.53 | 21897.78 | 281.06   | 1102.55  | 114.39   | 5385.1    |
| 238.23   | 78.78    | 1803.02  | 13.43    | 55.41    | 39336.89 | 35.03    | 105.2     |
| 30.42    | 18297.85 | 3218.10  | 3922.83  | 9061.50  | 554.12   | 34.67    | 6263.1    |
| 775.64   | 125.20   | 258.46   | 4317.18  | 19.41    | 36610.02 | 2639.98  | 88470.    |
| 306.40   | 63620.93 | 124.62   | 27593.07 | 12.27    | 3735.94  | 54600.92 | 16323.    |
| 24.52    | 98.36    | 3897.62  | 83.64    | 1332.91  | 681.08   | 35.78    | 20155.    |
| 978.42   | 792.87   | 20.72    | 11.58    | 20.95    | 33.48    | 6492.32  | 21837.    |
| 377.37   | 4070.05  | 140.86   | 1440.12  | 49249.29 | 42.74    | 24.25    | 142.6     |
| 145.34   | 11.25    | 639.73   | 3760.11  | 137.66   | 7284.50  | 48.13    | 12.55     |
| 12.75    | 13.33    | 380.89   | 2255.28  | 129.30   | 15289.74 | 2000.78  | 9727.4    |
| 133.44   | 1964.26  | 833.30   | 21.14    | 2434.45  | 472.93   | 29.40    | 6338.7    |
| 19.02    | 46687.43 | 10.13    | 23615.66 | 13.89    | 98.08    | 12953.88 | 973.6     |
| 318.32   | 81.36    | 6956.65  | 2823.58  | 114.92   | 333.27   | 1741.00  | 4458.6    |
| 14.95    | 83791.51 | 676.08   | 377.05   | 10.06    | 53161.84 | 401.05   | 43411.    |
| 859.36   | 247.74   | 24479.36 | 190.90   | 19.23    | 7085.98  | 10.38    | 2284.5    |
| 796.64   | 3535.09  | 36.81    | 84.26    | 169.04   | 74.27    | 207.40   | 31739.    |
| 13.91    | 347.70   | 18382.31 | 14401.24 | 97.90    | 133.78   | 44.87    | 1875.8    |
| 713.03   | 10.11    | 782.71   | 5425.00  | 19.73    | 63.15    | 35.97    | 17.51     |
| 313.00   | 26.55    | 2696.50  | 10.89    | 1561.71  | 62058.32 | 27.87    | 2525.8    |
| 948.97   | 146.82   | 98.27    | 544.50   | 60701.58 | 14.60    | 19.23    | 10794.    |
| 127.73   | 62.06    | 41304.75 | 29.32    | 24524.49 | 10.70    | 99815.96 | 5039.6    |




# Unexpected

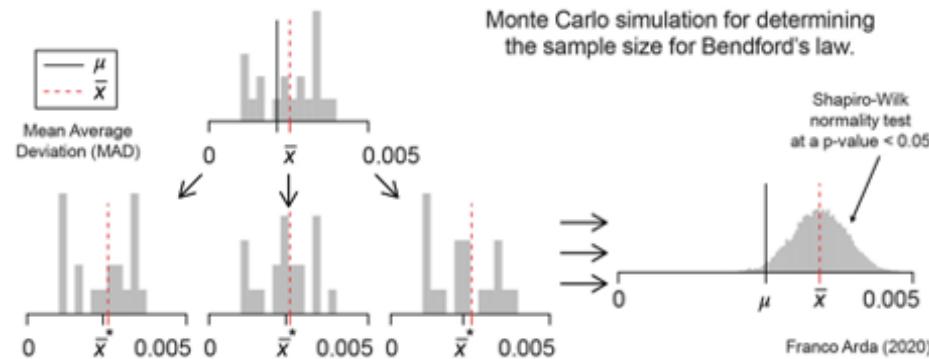
## Benford's distribution and the Central Limit Theorem (CLT)

Benford's Law and the Central Limit Theorem (CLT)


Sampling distribution of MAD for  $n = 1$  and  $k = 4,000$



Source: Franco Arda (2020)


Benford's Law and the Central Limit Theorem (CLT)

Sampling distribution of MAD for  $n = 100$  and  $k = 4,000$

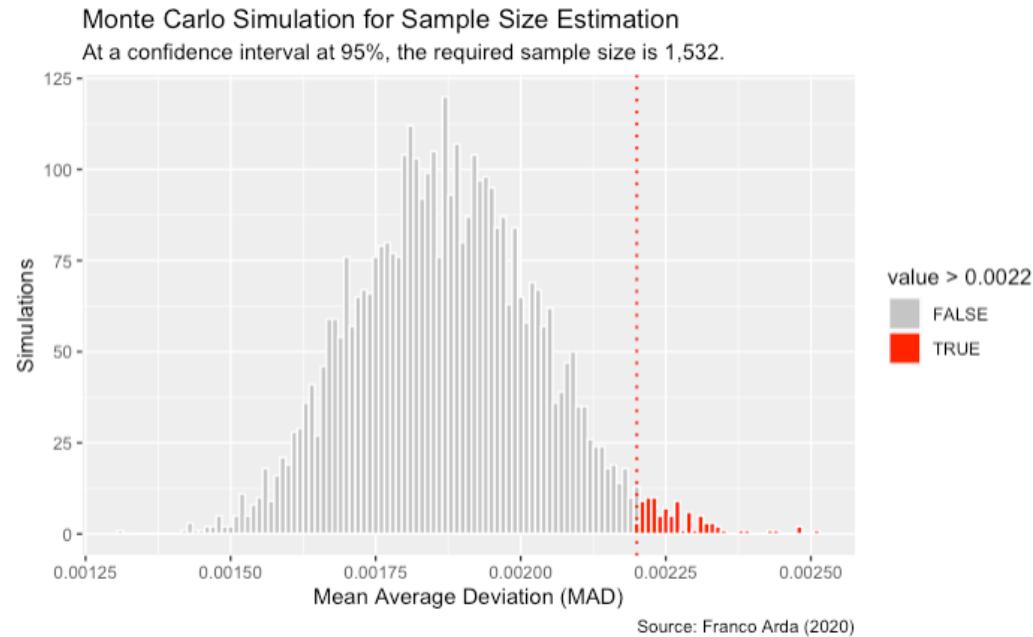


Source: Franco Arda (2020)

# Breakthrough approach in sample size determination






# Research Methodology: An iterative process

| Sample size | Number of simulations | Shapiro-Wilk normality test p-value | Mean Average Deviation | Lower bound confidence level | Upper bound confidence level | Confidence Interval |
|-------------|-----------------------|-------------------------------------|------------------------|------------------------------|------------------------------|---------------------|
| 10          | 1,000                 | 0.048                               |                        |                              |                              | 0%                  |
| 100         | 1,000                 | 0.001                               |                        |                              |                              | 0%                  |
| 1,000       | 1,000                 | 0.321                               |                        |                              |                              | 17.1%               |
| 1,700       | 3,000                 | 0.044                               |                        |                              |                              | 99.4%               |
| 1,650       | 4,000                 | 0.065                               |                        |                              |                              | 99.3%               |
| 1,600       | 4,000                 | 0.021                               |                        |                              |                              | 97.6%               |
| 1,550       | 4,000                 | 0.388                               |                        |                              |                              | 96.3%               |
| 1,540       | 4,000                 | 0.000                               |                        |                              |                              | 95.4%               |
| 1,525       | 4,000                 | 0.000                               |                        |                              |                              | 92.4%               |
| 1,530       | 4,000                 | 0.000                               |                        |                              |                              | 94.2%               |
| 1,535       | 4,000                 | 0.000                               |                        |                              |                              | 95.4%               |
| 1,532       | 4,000                 | 0.000                               |                        |                              |                              | 95%                 |

From the chapter “Monte Carlo sample size determination at a 95% confidence interval” on page 72.

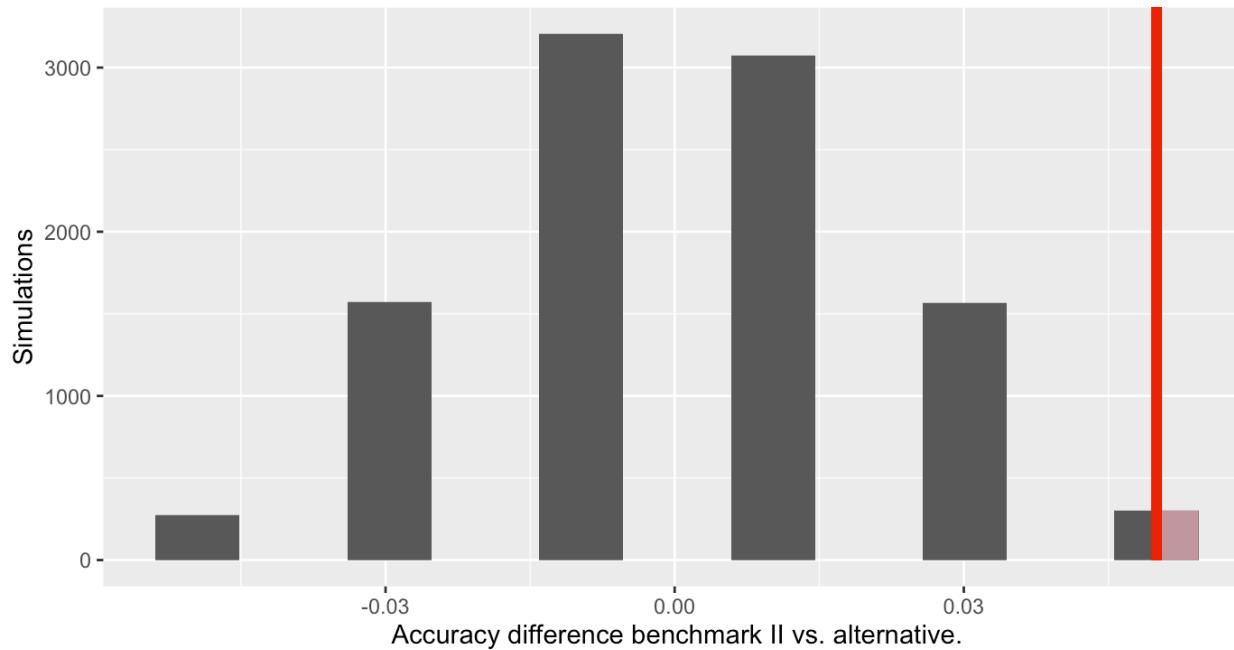


# Probably for the first time ever ...





# Research Results


|          | Benchmark I | Benchmark II | Alternative |
|----------|-------------|--------------|-------------|
| Accuracy | 95.23%      | 95.50%       | 100%        |
| Recall   | 0           | 0.38         | 1           |



# Hypothesis test

Simulation-Based Hypothesis Testing: Benchmark II vs. Alternative

Number of simulation = 10,000. Simulated p-value = 0.031



Source: Franco Arda (2020).



# Importance of the study

Our empirical study revealed for the first time ever the sample size required for the Benford algorithm:

- At a 90% confidence interval, we need a sample size of 1,480.
- At a 95% confidence interval, we need a sample size of 1,532.
- At a 99% confidence interval, we require a sample size of 1,670.



**Thank you!**

---

### **Special thanks to:**

- Prof. Dr. George Iatridis
- Prof. Dr. Mark J. Nigrini