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Benford’s Law to detect fraud
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From the chapter “A short introduction to Benford’'s Law” page 23.



“... for auditors, the false positives
have become a strong deterrent to
the use of Benford’s Law ...”

(Miller, 2015)

From the chapter “Introduction” page 16.



@ Empirical false positive rate at 9%?

Predicted
Positive Negative
Actual True 1 0
Actual False 0.09 1

From the chapter "Classification accuracy: benchmark Il vs. alternative” page 112.



Research Question

“... it is not clear, how large our
numbers (sample size) have to be...”

(Nigirini, 2012 and 2020)

From the chapter “Literature Review” page 16.



*" With fraud detection, the false positives AND the
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The earlier we can detect invoice
fraud, the better!
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sample size must be as small as possible.

From the chapter “The importance of sample size in fraud detection” page 33.
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Research Hypotheses

Research Hypothesis #1

For Benford’s Law, can we determine the sample size
required at a given confidence interval?

Research Hypothesis #2
With the required sample size, can we improve the
accuracy of the Benford algorithm at a statistically
significant level with a p-value 0.05?

From the pages 37 and 79.



Review of Literature

Research on Bedford's Law:

Forensic Analytics: Methods and Techniques for

Forensic Accounting, 2020
Prof. Nigrini is probably the world’s foremost expert on
Benford's Law.

An Introduction to Bedford's Law, 2015
Highly mathematical, but includes problems with Bedford's
Law in practice, in particular the high false positive rate.

The Use of Bedford's Law as a Tool for Detecting

Fraud in Accounting Data, 2016
Offers a deeper analysis of the first-two digit algorithm.

Research on computational statistics in R:

Mathematical Statistics with Resampling, 2019
Advanced techniques with Monte Carlo simulations,
bootstrap, and challenges with nonlinear distributions.

Data Science: Data Analysis and Prediction
Algorithms with R, 2019

Probability and random variables for running plain-vanilla
Monte Carlo simulations in R.

Statistical Inference via Data Science, 2019
Offers a library in R to run permutation based hypothesis
test with beautiful visualizations.

From the chapter “Literature Review” pages 16.
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Step 01

Create a dataset of 100 vendors with different
invoice amounts.
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Research Process

Monte Carlo Simulation for Sample Size Estimation
At a confidence interval at 95%, the required sample size is 1,532.
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Step 02

Simulate the required sample size based a
confidence interval (e.g., 5%).

0.0

Vendor: Benchmark II: Ground Alternative: Ground
truth: truth:
Vendor 14 0.000239 (%4 0.000239 (%4
Vendor 15 0.000239 4 0.000239 4
Vendor 16 0.000239 < 0.000239 (%4
Vendor 17 0.000121 (% 0.000121 (%
Vendor 18 0.000121 (%4 0.000121 (%
Vendor 19 0.000121 (% 0.000121 (%
Vendor 20 0.000121 4 0.000121 %4
Vendor 21 0.000121 (% 0.000121 (%
Vendor 22 0.000121 4 0.000121 4
Vendor 23 0.000121 (% 0.000121 (%
Vendor 24 0.000121 4 0.000121 4

Step 03

Test the accuracy of the algorithm and run a

hypothesis test at a p-value of 0.05.
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L The synthetic dataset of
almost 1 million invoices.

In order to test our hypothesis, we created a synthetic dataset of
100 vendors with up to 10,000 invoices each.

- 85 vendors with Benford conform invoice amounts.
- 10 vendors with only a few invoices.
- 5 vendors with randomized invoices (i.e., fraudulent).
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From the chapter “Creating a dataset of 100 vendors” on page 27.
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Simulations

Unexpected

Benford’s distribution and the Central Limit Theorem (CLT)

Benford's Law and the Central Limit Theorem (CLT) Benford's Law and the Central Limit Theorem (CLT)
Sampling dstribution of MAD for n = 100 and k = 4,000

Samplng distribution of MAD for n = 1 and k = 4,000
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From the chapter “Benford’s distribution and the Central Limit Theorem” on page 58.



Breakthrough approach
In sample size determination

Monte Carlo simulation for determining

the sample size for Bendford's law.
Shapiro-Wilk
normalkty test
at a pvalue <005
% .
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Research Methodology: An iterative process

) Number of Shapirx?-Wilk Mean Lowerbound  Upper bound Confidence
Sample size simulations  normality test Ave‘mge confidence confidence Interval
p-value Deviation level level
10 1,000 0.048 0%
100 1,000 0.001 0%
1,000 1,000 0.321 17.1%
1,700 3,000 0.044 99.4%,
1650 4000 0.065 99.3%,
1600 4,000 0.021 97.6%
1,550 4,000 0.388 96.3%
1,540 4,000 0.000 95.4%
1,525 4,000 0.000 92.4%
1,530 4,000 0.000 94.2%
1,535 4,000 0.000 95.4%
\/@ W 4000 N/ 0.000 \/@

From the chapter “Monte Carlo sample size determination at a 95% confidence interval” on page 72.



Probably for the first time ever ...

Monte Carlo Simulation for Sample Size Estimation
At a confidence interval at 95%, the required sample size is 1,532.

125 -
100 -

w 75~
5 . value > 0.0022
S -
g FALSE
E 50- TRUE
X [

26~

0- Ml 11 .
0.00125 0.00150 0.00175 0.00200 0.00225 0.00250

Mean Average Deviation (MAD)
Source: Franco Arda (2020)

From the chapter “Monte Carlo sample size determination at a 95% confidence interval” on page 72.



Research Results

Benchmark I Benchmark 11 Alternative

Accuracy 95.23% 95.50% 100%

Recall 0 0.38 1

From the chapter “Empirical findings” on page 119.



Hypothesis test

Simulation-Based Hypothesis Testing: Benchmark Il vs. Alternative
Number of simulation = 10,000. Simulated p-value = 0.031
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Source: Franco Arda (2020).

From the chapter “Accuracy” on page 99.



Importance of the study

Our empirical study revealed for the first time ever the sample size
required for the Benford algorithm:

- At a 90% confidence interval, we need a sample size of 1,480.
- At a 95% confidence interval, we need a sample size of 1,532.
- At a 99% confidence interval, we require a sample size of 1,670.

From the chapter “Conclusion” on page 125.
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